Lunar Outpost, the industry leader in lunar surface mobility, commercial space robotics, and space resources, today announced it has signed an agreement with SpaceX to deliver Lunar Outpost’s Lunar Terrain Vehicle (LTV) to the Moon aboard a SpaceX Starship for launch and landing. A leading opportunity for transporting heavy cargo to the lunar surface, this partnership unlocks Lunar Outpost to provide surface mobility to future NASA Artemis astronauts, and to establish critical infrastructure enabling sustainable commercial access to the lunar surface and other strategic locations in space.

Today’s announcement arrives on the heels of significant technical milestones for both companies. Lunar Outpost’s LTV human factors mockup recently completed testing at NASA’s Johnson Space Center in Houston, TX, following a successful System Requirements Review in September. SpaceX’s Starship spacecraft and Super Heavy rocket have made tremendous recent progress, including not only multiple successful launches of the Starship system but also the successful landing of the Super Heavy booster back in Starbase, TX, using the Mechazilla launch tower and chopsticks arms.

“Lunar Outpost’s LTV is designed to be the backbone of lunar surface operations by enabling science and exploration, building and maintaining interplanetary infrastructure, and facilitating space resource utilization,” said Justin Cyrus, founder and CEO of Lunar Outpost. “Having experienced the recent groundbreaking Starship test flight firsthand, we’re confident that SpaceX is advancing the most capable launch system ever created and will successfully land our Eagle vehicles on the surface of the Moon. This contract is instrumental to accelerating Lunar Outpost’s mission of enabling a sustainable human presence in space and we look forward to working with SpaceX to make that happen.”

Named the Lunar Outpost Eagle, Lunar Outpost’s LTV is being developed as part of NASA’s Lunar Terrain Vehicle Services (LTVS) contract. The Lunar Outpost Eagle is designed to revolutionize surface mobility on the Moon, supporting both manned and unmanned missions, offering advanced autonomous navigation, and featuring reconfigurable cargo options to maximize surface mission profiles for both governmental and commercial customers. With the ability to operate during harsh lunar night conditions, the LTV’s mission life extends from days to years, playing a crucial role in sustainable lunar activities. The Lunar Outpost Eagle is being built by the Lunar Dawn team, which is led by Lunar Outpost and includes industry leading collaborators Leidos, MDA Space, Goodyear, and General Motors.

Source: Lunar Outpost

Paris, France 20 October 2024 - Eutelsat Group (ISIN: FR0010221234 - Euronext Paris / London Stock Exchange: ETL) is pleased to announce the successful launch and deployment of 20 satellites into low Earth orbit (LEO), further strengthening the OneWeb constellation.

The satellites were launched aboard SpaceX’s Falcon 9 which lifted off at 10:13 pm PT (local) on October 19 from Space Launch Complex 4 East (SLC-4E) at Vandenberg Space Force Base in California. The satellites separated successfully from the vehicle and were dispensed in 10 batches over a period of 20 minutes, with signal acquisition confirmed on all 20 satellites. The satellites were built by Airbus U.S. Space & Defense in Merritt Island, Florida.

This launch occurs following the one-year anniversary of the merger between Eutelsat and OneWeb to create the world’s only GEO-LEO operator. Eutelsat Group is uniquely positioned to offer customers the advantages of GEO for high-throughput capacity alongside the low-latency, high-speed global connectivity provided by LEO satellites. Since the merger, Eutelsat has seen a significant increase in demand for multi-orbit services, and is collaborating with industry leaders such as Intelsat, Inmarsat Maritime, and Hughes to deliver cutting edge connectivity services worldwide, across sectors.

Eva Berneke, CEO of Eutelsat Group, commented: “We are delighted to see the successful launch and deployment of new OneWeb satellites. These satellites will strengthen our network services, improving overall performance for our customers. As we celebrate the anniversary of the merger with Eutelsat and OneWeb, we are excited by the growing demand for our multi-orbit services and we remain committed to delivering value for our customers and shareholders. I want to thank and congratulate the teams at Eutelsat Group and SpaceX for their hard work to facilitate this launch.

About Eutelsat Group

Eutelsat Group is a global leader in satellite communications, delivering connectivity and broadcast services worldwide. The Group was formed through the combination of the Company and OneWeb in 2023, becoming the first fully integrated GEO-LEO satellite operator with a fleet of 36 Geostationary satellites and a Low Earth Orbit (LEO) constellation of more than 600 satellites. The Group addresses the needs of customers in four key verticals of Video, where it distributes more than 6,500 television channels, and the high-growth connectivity markets of Mobile Connectivity, Fixed Connectivity, and Government Services. Eutelsat Group’s unique suite of in-orbit assets and ground infrastructure enables it to deliver integrated solutions to meet the needs of global customers. The Company is headquartered in Paris and the Eutelsat Group employs more than 1,700 people across more than 50 countries. The Group is committed to delivering safe, resilient, and environmentally sustainable connectivity to help bridge the digital divide. The Company is listed on the Euronext Paris Stock Exchange (ticker: ETL) and the London Stock Exchange (ticker: ETL).

Source: OneWeb

Starship's fifth flight test could launch as soon as October 13, pending regulatory approval. A live webcast of the flight test will begin about 30 minutes before liftoff, which you can watch here and on X @SpaceX. You can also watch the webcast on the new X TV app. The launch window will open as early as 7:00 a.m. CT. As is the case with all developmental testing, the schedule is dynamic and likely to change, so be sure to stay tuned to our X account for updates.

Flight 4 was a tremendous success. A fully successful ascent was followed by the first ever booster soft-landing in the Gulf of Mexico and Starship making it through a brilliant reentry, before its own landing burn and splashdown in the Indian Ocean.

The fifth flight test of Starship will aim to take another step towards full and rapid reusability. The primary objectives will be attempting the first ever return to launch site and catch of the Super Heavy booster and another Starship reentry and landing burn, aiming for an on-target splashdown of Starship in the Indian Ocean.

Extensive upgrades ahead of this flight test have been made to hardware and software across Super Heavy, Starship, and the launch and catch tower infrastructure at Starbase. SpaceX engineers have spent years preparing and months testing for the booster catch attempt, with technicians pouring tens of thousands of hours into building the infrastructure to maximize our chances for success. We accept no compromises when it comes to ensuring the safety of the public and our team, and the return will only be attempted if conditions are right.

Thousands of distinct vehicle and pad criteria must be met prior to a return and catch attempt of the Super Heavy booster, which will require healthy systems on the booster and tower and a manual command from the mission’s Flight Director. If this command is not sent prior to the completion of the boostback burn, or if automated health checks show unacceptable conditions with Super Heavy or the tower, the booster will default to a trajectory that takes it to a landing burn and soft splashdown in the Gulf of Mexico.

The returning booster will slow down from supersonic speeds, resulting in audible sonic booms in the area around the landing zone. Generally, the only impact to those in the surrounding area of a sonic boom is the brief thunder-like noise with variables like weather and distance from the return site determining the magnitude experienced by observers.

Starship will fly a similar trajectory as the previous flight test with splashdown targeted in the Indian Ocean. This flight path does not require a deorbit burn for reentry, maximizing public safety while still providing the opportunity to meet our primary objective of a controlled reentry and soft water landing of Starship.

One of the key upgrades on Starship ahead of flight was a complete rework of its heatshield, with SpaceX technicians spending more than 12,000 hours replacing the entire thermal protection system with newer-generation tiles, a backup ablative layer, and additional protections between the flap structures. This massive effort, along with updates to the ship’s operations and software for reentry and landing burn, will look to improve upon the previous flight and bring Starship to a soft splashdown at the target area in the Indian Ocean.

With each flight building on the learnings from the last, testing improvements in hardware and operations across every facet of Starship, we’re on the verge of demonstrating techniques fundamental to Starship’s fully and rapidly reusable design. By continuing to push our hardware in a flight environment, and doing so as safely and frequently as possible, we’ll rapidly bring Starship online and revolutionize humanity’s ability to access space.

Starship

Source: SpaceX

The Polaris Dawn crew, after launching into space earlier this week, completed the first commercial spacewalk at 4:58 am EDT today. Wearing newly-designed SpaceX extravehicular activity (EVA) suits, the crew began their approximately two-hour operation at 3:12 a.m. EDT while traveling at 17,500 miles per hour in an elliptical orbit of 190 x 700 km above the Earth. This spacewalk represents an important milestone of the Polaris Program, a developmental program designed to further the advancement of human spaceflight.

The crew began preparations for the spacewalk shortly after liftoff, through a two-day pre-breathe process designed to prevent decompression sickness by slowly acclimatizing the crew to lower pressures while slowly increasing oxygen levels within the spacecraft’s cabin. Once complete, the crew began preparations for the spacewalk, which included donning their EVA suits, completing suit leak checks, and venting Dragon down to vacuum.

After opening the hatch, the Polaris Dawn crew became the first four astronauts to be exposed to the vacuum of space at the same time. Over the next approximately twenty minutes, Commander Jared Isaacman and Mission Specialist Sarah Gillis egressed the vehicle, completed a series of tests designed to evaluate the suit’s mobility, thermal systems and the Dragon mobility aid “Skywalker” before returning to the cabin and closing the hatch. Mission Pilot Scott “Kidd” Poteet and Mission Specialist and Medical Officer Anna Menon supported Isaacman and Gillis throughout the entire operation monitoring vital support systems.

Once the hatch was closed, Dragon was re-pressurized, cabin oxygen and pressure levels confirmed, and the crew was able to remove their EVA suits, officially completing the suit testing alongside the first commercial spacewalk and the first EVA from a Dragon spacecraft. The crew was supported throughout the entire EVA by SpaceX teams in Hawthorne, California.

During the spacewalk, Isaacman reflected on the experience: “SpaceX, back at home we all have a lot of work to do, but from here, Earth sure looks like a perfect world.”

Over the last two years, the Polaris Dawn crew worked alongside SpaceX engineers throughout the development of the EVA suit. The suits underwent hundreds of hours of testing, including in a pressure and vacuum chamber to validate the pre-breathe protocol as well as EVA suit performance. First unveiled in May 2024, the EVA suit evolved from SpaceX’s Intravehicular Activity (IVA) suit. The new EVA suit provides greater mobility, a state-of-the-art helmet heads-up display (HUD) and camera, new thermal management textiles, and materials borrowed from SpaceX vehicles – specifically, Falcon’s interstage and Dragon’s trunk. All of these enhancements to the EVA suit are part of a scalable design for the millions of spacesuits required to help make life multiplanetary.

“Today’s EVA was the first time four humans were exposed to the vacuum of space while completing the first-ever commercial astronaut spacewalk from a commercially-produced spacecraft in commercially-produced extravehicular activity suits,” said Stu Keech, Vice President of Dragon at SpaceX. “This incredible milestone is all thanks to the hard work of the crew and many SpaceX teams, all focused on a goal of making life multiplanetary.”

The Polaris Dawn mission will continue to provide additional updates and milestones before the crew returns with a targeted splashdown off the coast of Florida.

Source: Polaris

SpaceX was founded in 2002 to expand access to outer space. Not just for government or traditional satellite operators, but for new participants around the globe. Today, we’re flying at an unprecedented pace as the world’s most active launch services provider. SpaceX is safely and reliably launching astronauts, satellites, and other payloads on missions benefiting life on Earth and preparing humanity for our ultimate goal: to explore other planets in our solar system and beyond.

Starship is paramount to making that sci-fi future, along with a growing number of U.S. national priorities, a reality. It is the largest and most powerful space transportation system ever developed, and its fully and rapidly reusable design will exponentially increase humanity’s ability to access and utilize outer space. Full reusability has been an elusive goal throughout the history of spaceflight, piling innumerable technical challenges on what is already the most difficult engineering pursuit in human existence. It is rocket science, on ludicrous mode.

Every flight of Starship has made tremendous progress and accomplished increasingly difficult test objectives, making the entire system more capable and more reliable. Our approach of putting flight hardware in the flight environment as often as possible maximizes the pace at which we can learn recursively and operationalize the system. This is the same approach that unlocked reuse on our Falcon fleet of rockets and made SpaceX the leading launch provider in the world today.

To do this and do it rapidly enough to meet commitments to national priorities like NASA’s Artemis program, Starships need to fly. The more we fly safely, the faster we learn; the faster we learn, the sooner we realize full and rapid rocket reuse. Unfortunately, we continue to be stuck in a reality where it takes longer to do the government paperwork to license a rocket launch than it does to design and build the actual hardware. This should never happen and directly threatens America’s position as the leader in space.

Flight 5

The Starship and Super Heavy vehicles for Flight 5 have been ready to launch since the first week of August. The flight test will include our most ambitious objective yet: attempt to return the Super Heavy booster to the launch site and catch it in mid-air.

This will be a singularly novel operation in the history of rocketry. SpaceX engineers have spent years preparing and months testing for the booster catch attempt, with technicians pouring tens of thousands of hours into building the infrastructure to maximize our chances for success. Every test comes with risk, especially those seeking to do something for the first time. SpaceX goes to the maximum extent possible on every flight to ensure that while we are accepting risk to our own hardware, we accept no compromises when it comes to ensuring public safety.

It's understandable that such a unique operation would require additional time to analyze from a licensing perspective. Unfortunately, instead of focusing resources on critical safety analysis and collaborating on rational safeguards to protect both the public and the environment, the licensing process has been repeatedly derailed by issues ranging from the frivolous to the patently absurd. At times, these roadblocks have been driven by false and misleading reporting, built on bad-faith hysterics from online detractors or special interest groups who have presented poorly constructed science as fact.

We recently received a launch license date estimate of late November from the FAA, the government agency responsible for licensing Starship flight tests. This is a more than two-month delay to the previously communicated date of mid-September. This delay was not based on a new safety concern, but instead driven by superfluous environmental analysis. The four open environmental issues are illustrative of the difficulties launch companies face in the current regulatory environment for launch and reentry licensing.

Steel and Water

Starship’s water-cooled steel flame deflector has been the target of false reporting, wrongly alleging that it pollutes the environment or has operated completely independent of regulation. This narrative omits fundamental facts that have either been ignored or intentionally misinterpreted.

At no time did SpaceX operate the deflector without a permit. SpaceX was operating in good faith under a Multi-Sector General Permit to cover deluge operations under the supervision of the Texas Commission on Environmental Quality (TCEQ). SpaceX worked closely with TCEQ to incorporate numerous mitigation measures prior to its use, including the installation of retention basins, construction of protective curbing, plugging of outfalls during operations, and use of only potable (drinking) water that does not come into contact with any industrial processes. A permit number was assigned and made active in July 2023. TCEQ officials were physically present at the first testing of the deluge system and given the opportunity to observe operations around launch.

The water-cooled steel flame deflector does not spray pollutants into the surrounding environment. Again, it uses literal drinking water. Outflow water has been sampled after every use of the system and consistently shows negligible traces of any contaminants, and specifically, that all levels have remained below standards for all state permits that would authorize discharge. TCEQ, the FAA, and the U.S. Fish and Wildlife Service evaluated the use of the system prior to its initial use, and during tests and launch, and determined it would not cause environmental harm.

When the EPA issued its Administrative Order in March 2024, it was done before seeking a basic understanding of the facts of the water-cooled steel flame deflector’s operation or acknowledgement that we were operating under the Texas Multi-Sector General Permit. After meeting with the EPA—during which the EPA stated their intent was not to stop testing, preparation, or launch operations—it was decided that SpaceX should apply for an individual discharge permit. Despite our previous permitting, which was done in coordination with TCEQ, and our operation having little to nothing in common with industrial waste discharges covered by individual permits, we applied for an individual permit in July 2024.

The subsequent fines levied on SpaceX by TCEQ and the EPA are entirely tied to disagreements over paperwork. We chose to settle so that we can focus our energy on completing the missions and commitments that we have made to the U.S. government, commercial customers, and ourselves. Paying fines is extremely disappointing when we fundamentally disagree with the allegations, and we are supported by the fact that EPA has agreed that nothing about the operation of our flame deflector will need to change. Only the name of the permit has changed.

Good steward

No launch site operates in a vacuum. As we have built up capacity to launch and developed new sites across the country, we have always been committed to public safety and mitigating impacts to the environment. At Starbase, we implement an extensive list of mitigations developed with federal and state agencies, many of which require year-round monitoring and frequent updates to regulators and consultation with independent biological experts. The list of measures we take just for operations in Texas is over two hundred items long, including constant monitoring and sampling of the short and long-term health of local flora and fauna. The narrative that we operate free of, or in defiance of, environmental regulation is demonstrably false.

Environmental regulations and mitigations serve a noble purpose, stemming from common-sense safeguards to enable progress while preventing undue impact to the environment. However, with the licensing process being drawn out for Flight 5, we find ourselves delayed for unreasonable and exasperating reasons.

On Starship’s fourth flight, the top of the Super Heavy booster, commonly known as the hot-stage, was jettisoned to splash down on its own in the Gulf of Mexico. The hot-stage plays an important part in protecting the booster during separation from Starship’s upper stage before detaching during the booster’s return flight. This operation was analyzed thoroughly ahead of Starship’s fourth flight, specifically focused on any potential impact to protected marine species. Given the distribution of marine animals in the specific landing area and comparatively small size of the hot-stage, the probability of a direct impact is essentially zero. This is something previously determined as standard practice by the FAA and the National Marine Fisheries Service for the launch industry at large, which disposes of rocket stages and other hardware in the ocean on every single launch, except of course, for our own Falcon rockets which land and are reused. The only proposed modification for Starship’s fifth flight is a marginal change in the splashdown location of the hot-stage which produces no increase in likelihood for impacting marine life. Despite this, the FAA leadership approved a 60-day consultation with the National Marine Fisheries Service. Furthermore, the mechanics of these types of consultations outline that any new questions raised during that time can reset the 60-day counter, over and over again. This single issue, which was already exhaustively analyzed, could indefinitely delay launch without addressing any plausible impact to the environment.

Another unique aspect to Starship’s fifth flight and a future return and catch of the Super Heavy booster will be the audible sonic booms in the area around the return location. As we’ve previously noted, the general impact to those in the surrounding area of a sonic boom is the brief thunder-like noise. The FAA, in consultation with the U.S. Fish and Wildlife Service, evaluated sonic booms from the landing of the Super Heavy and found no significant impacts to the environment. Although animals exposed to the sonic booms may be briefly startled, numerous prior studies have shown sonic booms of varying intensity have no detrimental effect on wildlife. Despite this documented evidence, the FAA leadership approved an additional 60-day consultation with U.S. Fish and Wildlife as a slightly larger area could experience a sonic boom.

Lastly, the area around Starbase is well known as being host to various protected birds. SpaceX already has extensive mitigations in place and has been conducting biological monitoring for birds near Starbase for nearly 10 years. The protocol for the monitoring was developed with U.S. Fish and Wildlife service, and is conducted by professional, qualified, independent biologists. To date, the monitoring has not shown any population-level impacts to monitored bird populations, despite unsubstantiated claims to the contrary that the authors themselves later amended. Even though Starship’s fifth flight will take place outside of nesting season, SpaceX is still implementing additional mitigations and monitoring to minimize impacts to wildlife, including infrared drone surveillance pre- and post-launch to track nesting presence. We are also working with USFWS experts to assess deploying special protection measures prior to launches during bird nesting season.

SpaceX is committed to minimizing impact and enhancing the surrounding environment where possible. One of our proudest partnerships in South Texas is with Sea Turtle Inc, a local nonprofit dedicated to sea turtle conservation. SpaceX assists with finding and transporting injured sea turtles to their facilities for treatment. SpaceX has also officially adopted Boca Chica Beach through the Texas General Lands Office Adopt a Beach Program, with the responsibility of picking up litter and promoting a litter-free environment. SpaceX sponsors and participates in quarterly beach cleanups as well as quarterly State Highway 4 cleanups. SpaceX has removed hundreds of pounds of trash from the beach and State Highway 4 over the last several years. SpaceX also fosters environmental education at the local level by hosting school tours as well as an Annual Environmental Education Day with Texas Parks and Wildlife, U.S. Fish and Wildlife Service, National Park Service, and Sea Turtle Inc.

To fly

Despite a small, but vocal, minority of detractors trying to game the regulatory system to obstruct and delay the development of Starship, SpaceX remains committed to the mission at hand. Our thousands of employees work tirelessly because they believe that unlimited opportunities and tangible benefits for life on Earth are within reach if humanity can fundamentally advance its ability to access space. This is why we’re committed to continually pushing the boundaries of spaceflight, with a relentless focus on safety and reliability.

Source: SpaceX

More Articles …